44 research outputs found

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    DNA instability in replicating Huntington's disease lymphoblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The expanded CAG repeat in the Huntington's disease (HD) gene may display tissue-specific variability (e.g. triplet mosaicism) in repeat length, the longest mutations involving mitotic (germ and glial cells) and postmitotic (neurons) cells. What contributes to the triplet mutability underlying the development of HD nevertheless remains unknown. We investigated whether, besides the increased DNA instability documented in postmitotic neurons, possible environmental and genetic mechanisms, related to cell replication, may concur to determine CAG repeat mutability. To test this hypothesis we used, as a model, cultured HD patients' lymphoblasts with various CAG repeat lengths.</p> <p>Results</p> <p>Although most lymphoblastoid cell lines (88%) showed little or no repeat instability even after six or more months culture, in lymphoblasts with large expansion repeats beyond 60 CAG repeats the mutation size and triplet mosaicism always increased during replication, implying that the repeat mutability for highly expanded mutations may quantitatively depend on the triplet expansion size. None of the investigated genetic factors, potentially acting <it>in cis </it>to the mutation, significantly influence the repeat changes. Finally, in our experiments certain drugs controlled triplet expansion in two prone-to-expand HD cell lines carrying large CAG mutations.</p> <p>Conclusion</p> <p>Our data support quantitative evidence that the inherited CAG length of expanded alleles has a major influence on somatic repeat variation. The longest triplet expansions show wide somatic variations and may offer a mechanistic model to study triplet drug-controlled instability and genetic factors influencing it.</p

    Quantification of Age-Dependent Somatic CAG Repeat Instability in Hdh CAG Knock-In Mice Reveals Different Expansion Dynamics in Striatum and Liver

    Get PDF
    Age at onset of Huntington's disease (HD) is largely determined by the CAG trinucleotide repeat length in the HTT gene. Importantly, the CAG repeat undergoes tissue-specific somatic instability, prevalent in brain regions that are disease targets, suggesting a potential role for somatic CAG repeat instability in modifying HD pathogenesis. Thus, understanding underlying mechanisms of somatic CAG repeat instability may lead to discoveries of novel therapeutics for HD. Investigation of the dynamics of the CAG repeat size changes over time may provide insights into the mechanisms underlying CAG repeat instability.To understand how the HTT CAG repeat length changes over time, we quantified somatic instability of the CAG repeat in Huntington's disease CAG knock-in mice from 2-16 months of age in liver, striatum, spleen and tail. The HTT CAG repeat in spleen and tail was very stable, but that in liver and striatum expanded over time at an average rate of one CAG per month. Interestingly, the patterns of repeat instability were different between liver and striatum. Unstable CAG repeats in liver repeatedly gained similar sizes of additional CAG repeats (approximately two CAGs per month), maintaining a distinct population of unstable repeats. In contrast, unstable CAG repeats in striatum gained additional repeats with different sizes resulting in broadly distributed unstable CAG repeats. Expanded CAG repeats in the liver were highly enriched in polyploid hepatocytes, suggesting that the pattern of liver instability may reflect the restriction of the unstable repeats to a unique cell type.Our results are consistent with repeat expansion occurring as a consequence of recurrent small repeat insertions that differ in different tissues. Investigation of the specific mechanisms that underlie liver and striatal instability will contribute to our understanding of the relationship between instability and disease and the means to intervene in this process

    A novel approach to investigate tissue-specific trinucleotide repeat instability

    Get PDF
    Abstract Background In Huntington's disease (HD), an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic instability may provide novel routes to therapies. However progress in this area has been hampered by the lack of sensitive high-throughput instability quantification methods and global approaches to identify the underlying factors. Results Here we describe a novel approach to gain insight into the factors responsible for the tissue specificity of somatic instability. Using accurate genetic knock-in mouse models of HD, we developed a reliable, high-throughput method to quantify tissue HD CAG repeat instability and integrated this with genome-wide bioinformatic approaches. Using tissue instability quantified in 16 tissues as a phenotype and tissue microarray gene expression as a predictor, we built a mathematical model and identified a gene expression signature that accurately predicted tissue instability. Using the predictive ability of this signature we found that somatic instability was not a consequence of pathogenesis. In support of this, genetic crosses with models of accelerated neuropathology failed to induce somatic instability. In addition, we searched for genes and pathways that correlated with tissue instability. We found that expression levels of DNA repair genes did not explain the tissue specificity of somatic instability. Instead, our data implicate other pathways, particularly cell cycle, metabolism and neurotransmitter pathways, acting in combination to generate tissue-specific patterns of instability. Conclusion Our study clearly demonstrates that multiple tissue factors reflect the level of somatic instability in different tissues. In addition, our quantitative, genome-wide approach is readily applicable to high-throughput assays and opens the door to widespread applications with the potential to accelerate the discovery of drugs that alter tissue instability

    Continuous and Periodic Expansion of CAG Repeats in Huntington's Disease R6/1 Mice

    Get PDF
    Huntington's disease (HD) is one of several neurodegenerative disorders caused by expansion of CAG repeats in a coding gene. Somatic CAG expansion rates in HD vary between organs, and the greatest instability is observed in the brain, correlating with neuropathology. The fundamental mechanisms of somatic CAG repeat instability are poorly understood, but locally formed secondary DNA structures generated during replication and/or repair are believed to underlie triplet repeat expansion. Recent studies in HD mice have demonstrated that mismatch repair (MMR) and base excision repair (BER) proteins are expansion inducing components in brain tissues. This study was designed to simultaneously investigate the rates and modes of expansion in different tissues of HD R6/1 mice in order to further understand the expansion mechanisms in vivo. We demonstrate continuous small expansions in most somatic tissues (exemplified by tail), which bear the signature of many short, probably single-repeat expansions and contractions occurring over time. In contrast, striatum and cortex display a dramatic—and apparently irreversible—periodic expansion. Expansion profiles displaying this kind of periodicity in the expansion process have not previously been reported. These in vivo findings imply that mechanistically distinct expansion processes occur in different tissues

    Stoichiometry of Base Excision Repair Proteins Correlates with Increased Somatic CAG Instability in Striatum over Cerebellum in Huntington's Disease Transgenic Mice

    Get PDF
    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER) enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5′-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1), the main enzyme responsible for 5′-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP–BER), were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLβ was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLβ strand displacement activity during LP–BER promotes the formation of stable 5′-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes is one critical factor underlying the tissue selectivity of somatic CAG expansion

    Onset and Progression of Behavioral and Molecular Phenotypes in a Novel Congenic R6/2 Line Exhibiting Intergenerational CAG Repeat Stability

    Get PDF
    In the present study we report on the use of speed congenics to generate a C57BL/6J congenic line of HD-model R6/2 mice carrying 110 CAG repeats, which uniquely exhibits minimal intergenerational instability. We also report the first identification of the R6/2 transgene insertion site. The relatively stable line of 110 CAG R6/2 mice was characterized for the onset of behavioral impairments in motor, cognitive and psychiatric-related phenotypes as well as the progression of disease-related impairments from 4 to 10 weeks of age. 110Q mice exhibited many of the phenotypes commonly associated with the R6/2 model including reduced activity and impairments in rotarod performance. The onset of many of the phenotypes occurred around 6 weeks and was progressive across age. In addition, some phenotypes were observed in mice as early as 4 weeks of age. The present study also reports the onset and progression of changes in several molecular phenotypes in the novel R6/2 mice and the association of these changes with behavioral symptom onset and progression. Data from TR-FRET suggest an association of mutant protein state changes (soluble versus aggregated) in disease onset and progression

    Methods for assessing DNA repair and repeat expansion in Huntington's Disease

    Get PDF
    Huntington’s disease (HD) is caused by a CAG repeat expansion in the HTT gene. Repeat length can change over time, both in individual cells and between generations, and longer repeats may drive pathology. Cellular DNA repair systems have long been implicated in CAG repeat instability but recent genetic evidence from humans linking DNA repair variants to HD onset and progression has reignited interest in this area. The DNA damage response plays an essential role in maintaining genome stability, but may also license repeat expansions in the context of HD. In this chapter we summarize the methods developed to assay CAG repeat expansion/contraction in vitro and in cells, and review the DNA repair genes tested in mouse models of HD. While none of these systems is currently ideal, new technologies, such as long-read DNA sequencing, should improve the sensitivity of assays to assess the effects of DNA repair pathways in HD. Improved assays will be essential precursors to high-throughput testing of small molecules that can alter specific steps in DNA repair pathways and perhaps ameliorate expansion or enhance contraction of the HTT CAG repeat
    corecore